

<u>CLASS – XII : SEMESTER – IY</u>

SUBJECT: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE (AIDS)-THEORY

FULL MARKS: 35

G

CONTACT HOURS: 60 Hours

UNIT NO.	SUB UNIT	ΤΟΡΙϹϚ	CONTACT HOURS	MARKS
Unit -6 Supervise d Learning (10)	6	Probabilistic classifier: Basics of Bayesian Learning, Conditional independence, Naive Bayes classifier. Applications of Naive Bayes Classifier to sentiment classification task, add-one smoothing. Instance based learning or lazy learning: K- nearest neighbor classifier, curse of dimensionality	20	10
Unit -7 Unsupervi sed Learning (5)	7	What is unsupervised learning? Difference between supervised and unsupervised learning, What is clustering? Difference between clustering and classification, Why do we use clustering in an unsupervised learning technique?, Some examples of real world application of clustering, K-means clustering algorithm and its drawback. Simple use cases	12	5

Madhyamik, HS Semester, WBJEE, Exam Preparation and Career, Scholarship, Study Guidance.

		Biological motivation for Artificial Neural		
		Networks(ANN),		
		A simple mathematical model of a neuron		
		(McCulloch and Pitts(1943)), Concept of		
		activation function: threshold function and		
		Sigmoid function, Perceptron as a linear		
		classifier, perceptron training rule,		
		Implementation of basic Boolean functions of		
		two inputs using threshold perceptron,		
		Equation of a linear separator in the input		
		space, Representational power of		
		perceptrons, Training unthresholded		
		perceptron using Delta rule(with derivation) ,		
		What is the need for hidden layers ? - XOR		
		example. Why do we need non-linearity in		
		ANN?, Network structures: feed forward		
Linit -8		networks and recurrent networks (basic		
Artificial		concept only).		
Neural	8	Training multiplayer feed-forward neural	26	17
Network		networks using Back propagation algorithm		
(17)		(Concepts only and no derivation),		
		Generalization, overfitting, and stopping		
		criterion, overcoming the overfitting problem		
		using a set of validation data.		
		An Illustrative example of an ANN		
		architecture for handwritten digit		
		recognition (Only input representation,		
		output representation and a block diagram		
		of the network),		
		Need for automatic feature learning,		
		difference between the conventional feed-		
		forward neural networks and CNN, role of		
		convolution layer and fully connected layer in		
		CNN, function of pooling layer in CNN. An		
	1			
		example of 2D convolution, a block diagram		
 	নোটস, সা	example of 2D convolution, a block diagram জেশন, মক টেস্ট এবং স্কলারশিপ আপডেট - EduTips অ্যাপ ডাউন	লোড করুন! 🛛 👂 Get IT ON Google P	lay

edutips.in	

G

Madhyamik, HS Semester, WBJEE, Exam Preparation and Career, Scholarship, Study Guidance.

Unit -9 Ethics in		Brief introduction to ethics in Large Language Models(LLM), for example, GPT, ChatGPT.		
Large Language Models (LLM)	9		2	3

NB: Additional 10 hours for Remedial and/or Tutorial classes

CLASS: XII

SUBJECT: ARTIFICIAL INTELLIGENCE AND DATA SCIENCE (AIDS)-PRACTICAL

FULL MARKS: 30

CONTACT HOURS: 60 HOURS

SL NO	TOPICS	CONTACT HOURS	MARKS	
1. Da	ta Visualization Techniques [Marks 5]			
1	Introduction to plotly library in python and plotting different types of plot using the library refer this (https://plotly.com/python/plotly-express/) 1D Histogram of four attributes of the IRIS dataset, 2D Histogram (considering the IRIS dataset, plot 2D histogram of petal length and width), Box Plots (Considering the IRIS dataset, show the Box plots of attributes for IRIS attributes and species), Plot the Pie chart, showing the distribution of IRIS flowers (use IRIS dataset), Scatter Plots for each pair of attributes of the IRIS dataset, Heatmap, Word clouds, Geospatial maps.	8	5	
2. Introduction to Machine Learning [6 Marks]				

Madhyamik, HS Semester, WBJEE, Exam Preparation and Career, Scholarship, Study Guidance.

2a	Introduction to python libraries like scipy and statsmodel to various basic codes Revisit matrix operations using scipy (basic matrix operations of addition, subtraction, multiplication, transpose), Using Scipy for advanced matrix operations - inverse. Write a python program to find the values of the parameters for the regression model with multiple features (using only formula for normal method).	6	3
2b	Generation of random (x, y) pairs where $y = f(x) + d$ (d varies from -r to +r, a random value), f being a linear function, Linear regression or line fitting of the data, Optimizing the function using gradient descent, Plotting the steps using matplotlib	6	3
3. Supervi	sed Learning [10 Marks]	02	
Зa	 Building linear regression-based threshold classifier and testing the model on Diabetes Data set downloadable from UCI Machine Learning Repository Building Logistic regression model for binary classification of Diabetes Data. Vary learning rate and verify the impact of learning rate on classification performance. Introduction to the IRIS dataset, building a logistic regression for multi-class classification and testing the model on the IRIS dataset downloadable from UCI Machine Learning Repository Building K-nearest neighbor classifier and testing on the IRIS dataset downloadable from UCI Machine Learning Repository (Use Scikit-learn open source data analysis library for implementing the models) 	18	7
3b	Building a naive Bayes classifier for sentiment analysis (Use Scikit-learn open source data analysis library)	6	3

#1 Ed-Tech Platform for Bengali Students

Madhyamik, HS Semester, WBJEE, Exam Preparation and Career, Scholarship, Study Guidance.

4. Unsupervised Learning [3 Marks]						
4a	Using Scikit-learn library to use the K-means algorithm for clustering IRIS data and its visualization	6	3			
5. Artificial Neural Network [6 marks]						
5a	 Using MLP from Scikit learn library, develop a handwritten digit recognition model using MLP and MNIST dataset Using CNN from keras library, develop a handwritten digit recognition model using CNN and MNIST dataset Compare the performance of the MLP based model and the CNN based model for the handwritten digit recognition task 	10	6			

NB: Additional 10 hours for Remedial and/or Tutorial classes

30

