PRACTICAL FOR CLASSES XI AND XII

SUBJECT : CHEMISTRY (CHEM)

CLASS – XI

COURSE CODE : PRACTICAL

FULL MARKS: 30

Evaluation Scheme for Examination	Marks
Volumetric analysis	10
Environment-related experiments	08
Characterization and purification of chemical substances	06
Class Record, Project and Viva	06
Total	30

Practical Syllabus

A. Basic Laboratory Techniques

- Cutting glass tube and glass rod i.
- Bending a glass tube ii.
- iii. Drawing out a glass jet
- iv. Boring a cork

B. Characterization and purification of chemical substances

- i. Determination of the melting point of an organic compound
- ii. Determination of the boiling point of an organic compound
- iii. Crystallization of impure sample of any of the following: Alum, Copper, Sulphate, Benzoic acid.

C. Environment-related experiments

- i. Calculation of pH of soil sample.
- ii. Determination of turbidity for a given sample of water
- iii. Determination of dissolved oxygen in a given sample of water
- i۷. Determination of TDS of water sample

D. Quantitative estimation (Use of digital balance (precession up to 3 decimal points)) (Volumetric analysis)

- i. Determination of strength of a given sodium hydroxide solution by titrating it against a standard oxalic acid solution.
- ii. Determination of strength of a given hydrochloric acid solution by titrating it against standard sodium carbonate solution.
- iii. Standardisation of KMnO₄ solution by using standard Oxalic acid solution.
- iν. Estimation of Fe in Mohr's salt solution using standard KMnO₄ solution or standard K₂Cr₂O₇ solution.

Project Work

Preparation of standard solutions:

- i) Preparation of (N/10) Oxalic acid solution.
- ii) Preparation of (N/10) Mohr's salt solution.
- iii) Preparation of (N/10) Sodium carbonate solution.
- iv) Preparation of (N/10) Hydrochloric acid solution.
- v) Preparation of (N/10) Sodium hydroxide solution.

b) Preparation of inorganic compounds:

- i) Preparation of potash alum.
- ii) Preparation of potassium ferric oxalate.

c) Study of acidity of-

- i) Different samples of tea leaves.
- ii) Fruit and vegetable juices.

CLASS – XII

COURSE CODE: PRACTICAL

FULL MARKS: 30

Evaluation Scheme for Examination	MARKS
Potentiometric Analysis	06
Salt Analysis	08
Detection of functional groups in Organic compounds	04
Content-Based Experiment (Chemical Kinetics/Thermochemistry/	
Preparation of Organic Compounds)	06
Class record, Viva and Project work	06
Total	30

Practical Syllabus

A. Chemical kinetics

- Study of the rate of reaction of iodide ions with hydrogen peroxide at room temperature using different concentrations of iodide ions. (with Excel plot)
- (ii) Study of the reaction rate of hydrolysis of ester in an acidic medium (with Excel plot)

B. Thermochemistry:

Any one of the following experiments:

- (i) Enthalpy of dissolution of copper sulphate or potassium nitrate.
- (ii) Enthalpy of neutralization of strong acid (HCl) and strong base (NaOH)
- (iii) Determination of enthalpy change during interaction (hydrogen bond formation) between acetone and chloroform.

C. Electrochemistry

- (i) Potentiometric titration of Fe³⁺/Fe²⁺ system with Potassium dichromate and Potassium permanganate solutions.
- (ii) Potentiometric determination of concentration of AgNO₃ solution (N/100 or N/200) using standard KCl solution (N/10).

D. Tests for the functional groups present in organic compounds:

Unsaturation, alcoholic -OH (1°), phenolic -OH, aldehyde, ketone, carboxylic acid and primary aromatic amine groups.

G

E. Preparation of Organic compounds:

Preparation of any two of the following compounds:

- (i) Benzilic acid (From Benzil)
- (ii) Aniline yellow or 2-Naphthol aniline dye.
- (iii) Iodoform.
- F. Characteristic test of carbohydrates, fats and proteins in pure samples and their detection in given foodstuffs.

G. Qualitative analysis

Determination of one cation and anion in a given salt.

Cations -
$$Pb^{2+}$$
, Cu^{2+} , Al^{3+} , Fe^{3+} , Cr^{3+} , Mn^{2+} , Ni^{2+} , Zn^{2+} , Co^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mg^{2+} , NH_4^+ Anions - CO_3^{2-} , S^{2-} , SO_4^{2-} , $S_2O_3^{2-}$, NO_2^- , NO_3^- , Cl^- , Br^- , I^- , PO_4^{3-}

(Note: Insoluble salts excluded)

Project work - where feasible may include

- (i) Model preparation
- (ii) Investigatory project
- (iii) Science exhibits
- (iv) Participation in science fairs
- (v) Testing purity of food articles like butter, pulse, milk etc.

